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Abstract— Urban public transit planning is crucial in re-
ducing traffic congestion and enabling green transportation.
However, there is no systematic way to integrate passengers’
personal preferences in planning public transit routes and
schedules so as to achieve high occupancy rates and efficiency
gain of ride-sharing. In this paper, we take the first step tp
exact passengers’ preferences in planning from history public
transit data. We propose a data-driven method to construct a
Markov decision process model that characterizes the process
of passengers making sequential public transit choices, in bus
routes, subway lines, and transfer stops/stations. Using the
model, we integrate softmax policy iteration into maximum
entropy inverse reinforcement learning to infer the passenger’s
reward function from observed trajectory data. The inferred
reward function will enable an urban planner to predict pas-
sengers’ route planning decisions given some proposed transit
plans, for example, opening a new bus route or subway line.
Finally, we demonstrate the correctness and accuracy of our
modeling and inference methods in a large-scale (three months)
passenger-level public transit trajectory data from Shenzhen,
China. Our method contributes to smart transportation design
and human-centric urban planning.

I. INTRODUCTION

In urban areas, public transit modes, such as buses and

subway lines, greatly benefit the society in reducing carbon

footprint and traffic congestion. However, it is challenging

to design public transit routes and schedules to attract more

people to use them for their (daily commute) needs. Figure 1

shows the dynamics of in-vehicle passengers of three new

bus routes in Shenzhen launched in Dec 26th, 2014. It

shows clearly that the two new routes M441 and M446 were

popular ones, with larger numbers of passengers aboard over

time, sometimes exceeding the total number of seats (the

straight red line). At the same time, fewer passengers took

the new M444. This indicates a potential problem in the

existing planning approach. Currently, new transit plan is

designed primarily based on covering the most estimated trip

demands volumes [1]. This approach completely ignores the

underlying passengers’ personal preferences (such as waiting

time, traffic condition, and so on), when selecting public

transit routes.

Let us consider a passenger as an agent, who decides how

to reach a destination via a sequence of decisions. This is

clearly a sequential decision problem, where the decisions
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Fig. 1. Popularity of new bus routes in Shenzhen, China.

made by the passenger depend on a certain inherent personal

(reward) function of various features such as transit schedule,

weather, traffic condition, etc. Hence, understanding and

characterizing such personal (reward) functions of passengers

will allow us to understand how passengers make decisions,

which will in turn enable the urban planners to better design

the public transit routes and schedules.

In the literature, various inverse reinforcement learning

(IRL) methods for MDPs have been proposed to learn human

behavior preferences and patterns (as reward functions) [2],

[3], [4]. Apprenticeship learning algorithms [2], [3] extract

the optimal reward function of an expert (e.g., a coach driver)

from observed behaviors by choosing the reward function

with a maximum gap of total reward from the best sub-

optimal policy. However, different from the apprenticeship

learning problem, passengers often adopt sub-optimal poli-

cies than a global optimal policy when choosing a public

transit path to the destination. Such a problem of learning

reward functions from observed sub-optimal behaviors is

then related to maximum entropy Inverse Reinforcement

Learning (IRL) [4], where the authors propose a probabilistic

approach to discover reward function for which a near-

optimal policy closely mimics observed behaviors. In recent

years, this line of studies has drawn significant attentions

from the research community, where various extensions

and applications have been proposed, including IRL with

nonlinear reward functions [5], infinite horizon decision

problems [6] and learning from demonstration in robotics [7].

However, none of these works has studied the urban transit

route selection problem with large-scale real data. In this

paper, by analyzing a large scale (3 months) passenger-

level public transit trajectory data from Shenzhen, China,

we make the first attempt to extend and apply maximum

entropy IRL for urban transit planning and inverse learning

passengers’ preferences. The contribution in this paper are

three-fold: First, we construct a high-fidelity MDP model

to characterize the urban transit path selection process of

different passengers. Second, we develop a novel inverse

learning algorithm that employs softmax policy iteration to
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perform gradient decent in maximum entropy IRL. Such an

algorithm enables us to consider various discounting factors

and different levels of sub-optimality, namely, we relate the

temperature parameter in softmax policy iteration as a way to

modulate the sub-optimality in agent’s decision and provides

deeper insight about passengers’ behavior in real data. Last

but not the least, we validate our method with both synthetic

data and large-scale real-world urban transit data. The eval-

uation results demonstrate that our proposed approach can

extract the passenger reward function with a near-optimal

policy very close to the observed passenger behaviors, which

strongly justifies our hypothesis that passenger makes sub-

optimal decisions.

The rest of the paper is organized as follows. In Sec II,

we briefly introduce the preliminaries of MDP and maximum

entropy IRL. Sec III describes our datasets and introduces

the data-driven modeling of passenger’s trip trajectory se-

lection process as an MDP. Sec IV introduces the softmax

policy iteration algorithm to inversely learn the passengers’

personal preferences as reward functions. Sec V evaluates the

proposed approach using both synthetic data and real data.

Finally, sec VI concludes the paper.

II. PRELIMINARIES

In this section, we briefly review the basics of finite

Markov Decision Process and Maximum Entropy Inverse

Reinforcement Learning, which are the foundations of our

data-driven model and inverse learning algorithm for urban

passenger preferences characterization.

A. Markov Decision Process (MDP)

An MDP is represented as a tuple 〈S,A, P, γ, μ0, r〉,
where S is a finite set of states and A is a set of actions.

P is the probabilistic transition function with P (s′ | s, a) as

the probability of arriving at state s′ by executing action a at

state s, γ ∈ (0, 1] is the discounting factor, μ0 : S → [0, 1]
is the initial distribution, and r : S × A → R is the reward

function. In our problem, each Markov Decision Process

(MDP) has one terminal state sterminal ∈ S. It ensures that

every trajectory ends at that terminal state.

A randomized, memoryless policy is a function that spec-

ifies a probability distribution on the action to be executed

in each state, defined as π : S × A → [0, 1]. The planning

problem in an MDP aims to find a policy π, such that the

expected total reward is maximized, namely,

π∗ = argmax
π∈Π

E
π(

T∑

t=0

γtr(St, At) | S0 ∼ μ0),

where St and At are random variables for the state and action

at the time step t, and T ∈ R ∪ {∞} is the set of time

horizons. The initial state S0 follows the initial distribution

μ0. Here, Π is the memoryless policy space.

B. Maximum Entropy IRL

The inverse reinforcement learning problem in MDPs

aims to find a reward function θ : S × A → R such

that the distribution of action and state sequences under a

(near-)optimal policy match the demonstrated behaviors. One

well-known solution to Maximum Entropy IRL problem [4]

proposes to find the policy, which best represents demon-

strated behaviors with the highest entropy, subject to the

constraint of matching feature expectations to the distribution

of demonstrated behaviors.

The reward function θ is given as a linear combination of

k features φi with weights θi such that ∀(s, a) ∈ S × A :
r(s, a) = θ · φ(s, a). And for a trajectory ρ, which is a

sequence (s0, a0, s1, a1, s2, a2..., sN ) of states si ∈ S and

actions ai ∈ A, for i = 0, . . . , N where sN = sterminal is a

terminal state in the MDP, the reward of this trajectory can

be written as

r(ρ) = θ · φ(ρ), (1)

where φ(ρ) =
∑N−1

i=0 γiφ(si, ai) is the discounted feature

vector counts along trajectory ρ.

Applying the principle of maximum entropy, the following

equation holds, ∑

ρ∈P

P (ρ)φ(ρ) = φ̃,

where φ̃ = 1
m

∑
ρ∈P φ(ρ) is the expected empirical feature

vector calculated from demonstrated trajectories, and P (ρ)
is the probability of the path ρ in the Markov chain induced

from a near-optimal policy π, which ensures that if two

trajectories ρ′ and ρ have the same total reward, then P (ρ) =
P (ρ′). In non-deterministic MDPs, we can easily estimate

the distribution using maximum likelihood estimation, θ∗ =
argmaxθ L(θ) = argmaxθ

∑
ρ∈P logP (ρ̃|θ). Then, a stan-

dard gradient decent method can solve it with

∇L(θ) = φ̃−
∑

ρ∈P

P (ρ|θ)φ(ρ) = φ̃−
N−1∑

i=0

x(si, ai)φ(si, ai),

(2)

where x(si, ai) =
∑N−1

i=0 γtxt(si, ai) is discounted state-

action (si, ai) visitation frequency and xt(si, ai) is state-

action (si, ai) visitation frequency at time step t. For infinite

horizon planning, the time step N can be chosen as the

mixing time in the Markov chain induced with the optimal

policy π in the MDP [8].

To compute the state visitation frequency, [4] proposes

an algorithm, which does not consider discounting factor γ,

and the level of agent’s sub-optimality in choosing policies,

which are both important factors in modeling passengers’

decision making process. In Sec IV, we propose an extended

maximum entropy IRL algorithm that adopts softmax policy

iterations to calculate the state visitation frequency, that can

naturally incorporate both discounting factor γ and the agent

sub-optimality level (as a temperature factor τ ).

III. DATA-DRIVEN MODELING OF URBAN

TRANSIT CHOICE

Now, we are in a position to elaborate on the real world

datasets we use, the process we prepare the data for our

study, and the MDP model we develop to capture passengers’

decision making process.
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Fig. 2. Shenzhen subway lines
and road map

Fig. 3. Map griding (� = 0.01◦)

A. Data set description

We employ two sets of urban data sources for our study,

including both urban transportation infrastructure data and

public transit transaction data, which are detailed as follows.

Urban transportation infrastructure data include ur-

ban road network structure, bus routes, and subway lines

in Shenzhen, China. In our study, we retrieve a bound-

ing box of Shenzhen City, specified by the south-west

and north-east corners as (22.447203◦, 113.769263◦) and

(22.70385◦, 114.33991◦) in latitude and longitude.Figure 2

visualizes all road segments and subway lines. The public

transit system consists of buses routes and subway lines. In

2014, there were in total about 890 bus routes covering all

the road segments on the road map. Moreover, there were

five subway lines (as shown in Figure 2).

Public transit trip trajectory data. In Shenzhen, passengers

take public transits, including buses and subway lines with

their smart cards, and all the fares are collected by the

automatic fare collection (AFC) system. Each passenger can

be uniquely identified by the card ID. Our AFC data include

all events, when a passenger entering, or exiting a subway

station, and getting on or off a bus. For example, an AFC

data record has four fields 〈PID, SID, t, u〉, where PID is

the passenger ID, SID is an unique ID indicating a subway

station or a bus stop of a particular bus route, t is the event

time, u is a binary variable indicating if it is an entering

(u = 1) or exiting (u = 0) event. Our datasets were

collected during 10/1/2014-12/31/2014 in Shenzhen, China,

representing on average 11 million trip segments, equivalent

to 6 million trip trajectories on a regular working day.

B. Data processing

An urban trip demand of a passenger indicates the intent

of a passenger to travel from a source location src to a

destination location dst from a given starting time t, which

can be represented as a triple 〈src, dst, t〉. Instead of viewing

each individual passenger as an agent, we consider an agent

as a group of passengers with nearby source and destination

locations. Since in reality, people who live in the same

residential community and working in the same commercial

area tend to have the similar income level and family sizes,

that likely lead to the similar preference profile in public

transit decision making [9]. Moreover, this allows each agent

(as a group of people) to have more trajectory data samples

to learn their preferences modeled by reward functions. We

partition the entire urban area into small regions, so that

the commute passengers with the same home and working

regions are aggregated as one agent.

For the ease of implementation, in this paper, we adopt the

gridding based method, which simply partitions the map into

equal side-length grids [10], [11]. Moreover, the gridding

based method allows us to adjust the side-length of grids,

to better examine and understand impacts of the grid size.

Figure 3 shows all partition grids in the bounding rectangle

region of Shenzhen, China, with side-length � = 0.01◦. After

removing inaccessible grids, Figure 3 highlights (in light

color) those grids on the road network of Shenzhen, China.

Hence, each agent is represented as a source-destination grid

pair during a certain time interval (e.g., morning rush hour

7–9AM), representing all trip trajectories that start from the

source grid and end at the destination grid during that time

interval. In the next subsection, we develop a data-driven

MDP model for each agent to characterize the decision-

making problem of the trip demands of the particular agent.

With the model, we will further inversely learn the agent’s

preference (See Sec IV).

C. Data-driven model: Urban transit choice as an MDP

Given the agents defined above, we model the process of

how a passenger (of an agent) makes an urban public transit

choice as an optimal planning problem i.e., an MDP

M = 〈S,A, P, γ, μ0, r〉.
Below, we detail how each MDP component can be extracted

from real world data.

State set S: Each state s ∈ S is spatio-temporal region,

denoted as a tuple (g, t), where g represents a grid on the

road map and t is a discrete time slot with a predefined

time interval. The state space S is finite, since the map is

partitioned into a finite number of grids (e.g., 1, 018 grids

in Figure 3) and each day is divided into a fixed number

of 5-minutes intervals. For an agent, with a starting grid gs,

and a destination grid ge, and morning rush time duration

7 − 9AM , the state space only includes a limited number

of spatio-temporal regions along the bus and subway lines

from gs to ge.

Action set A: An action a ∈ A is the decision made by a

passenger in an agent, to take a certain bus route or take a

subway line.

Transition probability function: P : S × A × S → [0, 1]
Due to the dynamics of urban road traffic and crowd flow

conditions, after an agent takes an action a (e.g., bus route)

at a state s, the time of reaching the transfer stop may varies,

leading to different state s′ (of the same spatial grid but dif-

ferent time interval). Such uncertainty is characterized by the

transition probability function as P (s′ | s, a), representing

the probability of arriving at the state s′ after choosing action

a at the state s. The transition probability is obtained from

maximum likelihood estimation from real-world urban transit

trajectory data as follows. Suppose that we observed m
trajectories for an agent in the historical data. Each trajectory

ρ is represented as a sequence of discrete states and actions

ρ = {s0, a0, s1, a1, · · · , sN} where sN = sterminal is a

destination and s0 ∈ S is a source. With this information, the

maximum likelihood estimator for the transition (s, a, s′) is
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obtained by P (s′ | s, a) = N(s,a,s′)∑
s′∈S N(s,a,s′) , where N(s, a, s′)

is the count of this transition observed from all historical

trajectory data.

γ and r: In the MDP, γ is the discounting factor and r :
S×A → R is the reward function. Both capture the unique

personal preferences of an agent, and to be inversely learned

from data.

IV. INVERSE INFERENCE WITH SOFTMAX

POLICY ITERATION

In this section, we first present multiple features we ex-

tracted from real data, which determine how people evaluate

different transit choices. Then, we propose a novel algorithm

with softmax policy iteration for obtaining the state-action

visitation frequency, which is used as input to the gradient

descent algorithm Eq. 2 in Sec II for computing the reward

function.

A. Feature extraction

As alluded earlier, the reward of an agent taking an action

a at a state s is a linear combination of a list of k features,

i.e., r(s, a) =
∑k

i=1 θiφi(s, a) = θ · φ(s, a), with k ≥ 1.

These features are presumably what passengers evaluate

strongly in reality, when making their decisions of public

transit choices. We construct four such features based on

common sense and available data, including fare, travel time,

remaining time and transfer time.

Fare. Given a state-action pair (s, a), we calculate average

amount money that passengers spend on it.

Travel Time. For a state-action pair (s, a), this feature

captures the average time of passengers’ getting their next

state s′.
Remaining Time. When we talk about commuters, there

always is a deadline associate with their commuting. For

instance, in Shenzhen, people usually are required to start

work at 9AM. So we calculate how many minutes left before

9AM in a state-action pair (s, a).
Transfer Time. Passengers always want to avoid too much

transfering between different bus routes or subway lines. So

we use average number of routes that passengers at a state-

action pair (s, a) would take in the future before finishing

their trip as Transfer Time. It can represent level of service

at certain level, also.

B. Softmax policy iteration for computing state visitation
frequency

In this section, we introduce softmax policy iteration, for

calculating the visitation frequency x(s, a), as input to the

gradient descent algorithm for solving the reward function

of a given agent. The proposed algorithm consists of two

stages: First, it calculates the maximum entropy policy π.

Then, it computes the state-action visitation frequency in the

Markov chain induced by the policy π.

Stage 1: Softmax policy iteration.
Algorithm 1 shows the algorithm to calculate maximum

entropy policy π(s, a). The first two steps initialize a uniform

starting policy πsoft
0 (s, a) = 1

|A(s)| , with A(s) as the set of

Algorithm 1 Softmax Bellman policy

1: The initial policy: πsoft
0 (s, a) = 1

|A(s)| , k = 0;

2: V0(s) = 0, for all s ∈ S;
3: Set temperature τ ≥ 0;
4: while ‖Vk+1 − Vk‖ ≥ ε do
5: for s ∈ S \ sterminal, and a ∈ A(s) do
6: Qk+1(s, a) = θ · φ(s, a) + γ

∑
s′∈S P (s′ | s, a)Vk(s

′)
7: πsoft

k+1(s, a) =
exp(Qk+1(s,a)/τ)∑

a∈A(s) exp(Qk+1(s,a)/τ)

8: Vk+1(s) =
∑

a∈A(s) Qk+1(s, a)π
soft
k+1(s, a))

9: Vk+1(s) = 0 for s = sterminal

10: k ← k + 1
11: return πsoft(s, a)

actions available at the state s, and set initial values of all

states to be 0. Then, starting from the initial policy πsoft
0 (s, a),

Line 6–9 performs policy improvement and evaluation.

Comparing to classical policy iteration method [6], the

policy update step is replaced by a soft update: The proba-

bility of selecting action a from state s is proportional to a

weighted exponential of the state-action value, which is com-

puted from the policy evaluation. When a temperature param-

eter τ → 0, the softmax policy iteration recovers to classical

policy iteration step and is equivalent to a deterministic

policy π : S → A such that π(s) = argmaxa∈A(s) Q(s, a).
The convergence to an optimal policy using softmax policy

iteration is not guaranteed. On the other hand, large value

of τ causes the policy to approximate a uniformly random

policy. One way to enforce convergence is to adapt τ with

the step of iterations. In our case, having multiple sub-

optimal policies is actually desired because human does not

necessarily make the optimal decisions. Our idea is to use

softmax policy iteration to perform the gradient descent step

with some temperature parameters, not to solve the optimal

policy.

Stage 2: State-action pair visitation frequency.
For a given policy π(s, a), we employ the following set

of linear equations to solve the state-action pair visitation

frequency x(s, a): ∀s ∈ S,
∑

a∈A(s)

x(s, a)−γ ·
∑

s′∈S

∑

a′∈A(s′)

x(s′, a′)·P (s′, a′, s) = u0(s),

and
x(s, a)∑

a′∈A(s)x x(s, a
′)

= πsoft(s, a),

where u0 is the initial distribution, πsoft is the softmax policy

obtained with the current parameter θ and policy iteration,

and variable x(s, a) can be frequency of visiting state s and

taking action a. Once the set of equations is solved, we can

update the feature parameter θ by following (2).

V. DATA-DRIVEN EVALUATIONS

In this section, we evaluate our proposed inverse learning

algorithm for extract passengers’ preference reward func-

tions, with both synthetic data, and real-world urban public

transit trajectory data.
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A. Evaluation configuration

We use stopping criteria as ε1 = 1e−5 for Softmax policy
iteration and ε2 = 1e−6 for Gradient Decent. Given an

agent, our inverse learning algorithm can learn a reward func-

tion θ∗ corresponding to sub-optimal policy πsoft and an ex-

pected feature count vector φsoft =
∑N−1

i=1 x(si, ai)φ(si, ai).
We measure the difference between this expected feature

count vector φsoft and the expected feature counts from

demonstrated trajectories, i.e., φ̃ = [ 1m
∑m

i=1 φ(ρi)], with 2-

norm difference, which is referred to as feature difference.

Moreover, we can estimate an empirical policy from the his-

torical trajectory data π̃, using maximum likelihood method,

similar to how we estimate the transition probability function

(as stated in Sec III). As a second evaluation metric, we also

evaluate the difference between πsoft and π̃, using 1-norm

difference, which is called policy difference.

B. Evaluations with synthetic data

We evaluation the method first with synthetic data. First,

we construct an MDP M with user-specified numbers of

states and actions and a randomly generated transition prob-

ability function. To obtain demonstration trajectories, we

define a randomized policy π in the MDP as the expert

policy and produce a set of trajectories using the Markov

chain induced from M with the policy π. Since there is no

features discussed in Sec IV in synthetic data, we created

an artificial feature vector φs(s, a) for each state-action pair

(s, a) as follows. Each entry in φs(s, a) corresponds to a

state-action pair in the MDP M . Only the entry in φs(s, a)
corresponding to state-action pair (s, a) is 1, and other entries

are 0’s. Next, we apply our algorithm to inverse learn, from

the synthetic trajectories, a reward function. The correctness

and accuracy in the learned reward function is evaluated

through the comparison between a policy computed from

the learned reward function and the expert policy π.

Figure 4 shows the convergence of feature difference with

an MDP of 25 states and 8 actions. The number of iterations

to converge is 150, though the policy difference is not

convergent yet at that iteration number (See Figure 5). This

is reasonable, since passengers follow sub-optimal policy in

reality, and there are multiple sub-optimal policies for the

same reward function. It is note that at the iteration of 150
the policy difference reaches as low as 0.08. To test the

efficiency in the proposed algorithm, we generated MDPs

with different sizes — M1, M2, M3 — with 25 states and 8

actions, 50 states and 10 actions, 100 states and 20 actions,

respectively. For these MDPs, we randomly generate 10, 000
trajectories as input data. Moreover, we generated an MDP

M4 with the same size of M3, but 100, 000 trajectories.

Figure 5) shows interesting results: As we increase the

size of MDPs (from M1 to M3), the convergence speed

decreases. This is expected, because a larger MDP has

a larger feature parameter vector to learn from data. On

the other hand, when we increase the trajectory set, from

10, 000 (M3) to 100, 000 (M4), the accuracy (in terms of

the policy difference) improves, but the convergence rate

becomes slower. This is also expected, since more sampled

trajectories provide more accurate estimation of transition

probability functions and feature count vectors.

In Figure 6, we study the impact of discounting factor

to the rate of convergence using the MDP with 50 states

and 10 actions. Generally, as γ decreases, error increases. It

is because we use discounted state-action visiting frequency

x(si, ai) =
∑∞

t=0 γ
txt(si, ai) which can be viewed as a

weighted sum over state-action visiting frequency xt(si, ai)
at different time step t. If we denote εt as error term in

time step t, we can easily calculate error of discounted state-

action visiting frequency using ε(si, ai) =
∑∞

t=0 γ
tεt(si, ai).

Clearly, when decreasing γ, ε(si, ai) tends to contain only

short term errors which can be smaller than error accu-

mulated over a long term. For example, assume we have

a state sp that only be visited at time step 20. Then we

have
∑

a′∈A(sp)
ε(sp, a

′) =
∑

a′∈A(sp)
γ20x20(sp, a

′). If γ
is small enough, we can assign any policy to sp and still

have very small error in sp.

Next, we conduct experiments to see the influence of

different temperatures on the convergence. Results are shown

in Figure 7. For the MDP with 50 states and 10 actions, we

generate 10,000 trajectories with γ = 0.7. Figure 7 shows

that error goes up when temperature is either too large or too

small. If temperature is too large, a policy tends to be equal

probability policy which certainly has a higher error. On the

other hand, if we set a small temperature, the policy tends

to be an optimal deterministic policy which has a higher

error because the demonstration policy is assumed to follow

the principle of maximum entropy and thus sub-optimal and

randomized.

C. Evaluations with real data

In this subsection, we evaluate our model on real traffic

trajectory data in Shenzhen, where we extract features in

Sec IV. The MDP includes 638 states and 80 actions for an

agent. Figure 8 and Figure 9 show accuracy and speed of

convergence. We set γ = 1 and τ = 1 for discount factor

and temperature parameters. In Figure 9, we compare our

method with Appreticeship Learning method and MaxEnt

IRL under optimal policy. The results shows that our softmax

sub-optimal method outperform those two baselines. The

IRL+OP method have the worst performance and the feature

different bounces around 0.25, which clearly indicates that

we can’t model human transit decision making process as

an optimal decision making process. Besides, comparing to

AL, our method would achieve better result and smoothier

converge. Also, We observe that our algorithm converges

very fast within 40 iterations. Moreover, within the first 10

iterations, the feature difference already converges to 10−5.

For policy difference, it converges within 40 iterations. The

policy difference is also monotonically decreasing.

Then, we use our method with different settings in terms

of discounting factor γ. Figure 10 shows that we can obtain

an optimal γ which has the lowest error. Recall that Figure 6

indicates that a smaller γ always tends to have a lower

accuracy. But in Figure 10, we can observe that the model

achieve best performance around γ = 0. This suggests that
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Fig. 4. Feature difference over
iterations with synthetic data.

Fig. 5. Policy difference over
iterations with synthetic data.

Fig. 6. Policy difference vs dis-
counting factor γ with synthetic
data.

Fig. 7. Policy difference vs tem-
perature τ with synthetic data.

Fig. 8. Feature difference over
iterations with real data.

Fig. 9. Policy difference over
iterations with real data.

Fig. 10. Policy difference vs dis-
counting factor γ with real data.

Fig. 11. Policy difference vs tem-
perature τ with real data.

when passengers make transit decisions, they usually tends to

only evaluate their choice based on current status rather than

future ones. It makes sense because it is hard for passenger

to predict future without limited information.

Temperature τ makes difference in agents’ sub-optimal

decision making too, as we show in Figure 11. Similar

to Figure 7, a best τ can be found to achieve the lowest

feature difference. As we have stated, higher temperature

usually means that passengers tend to evaluate all possible

choice as the same. The optimal τ we obtain is around 6,

that implies that passengers’ preference on different features

we extract can play an importance role in passengers urban

transit decision making.

VI. CONCLUSION

In this paper, we introduce a framework of modeling and

inverse learning of human preferences in urban public transit

choices. We first develop a Markov decision process model

to characterize how passengers make sequential urban public

transit choices. Then, we propose a novel inverse learning

algorithm to extract the passengers’ personal preferences,

that integrates a softmax policy iteration into gradient descent

in the maximum entropy IRL. This modification enables

us to consider various discounting factors and different

levels of sub-optimality in passengers’ decision making.

We conducted extensive experiments using large-scale real

urban public transit data from Shenzhen, China, to evaluate

our proposed method, which yielded promising results: Our

proposed approach can extract the passenger reward function

with near-optimal policy very close to the observed passen-

ger behaviors, which strongly justifies our hypothesis that

passenger makes sub-optimal decisions.
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